A Note on Belief Structures and S-approximation Spaces

نویسندگان

چکیده مقاله:

We study relations between evidence theory and S-approximation spaces. Both theories have their roots in the analysis of Dempsterchr('39')s multivalued mappings and lower and upper probabilities, and have close relations to rough sets. We show that an S-approximation space, satisfying a monotonicity condition, can induce a natural belief structure which is a fundamental block in evidence theory. We also demonstrate that one can induce a natural belief structure on one set, given a belief structure on another set, if the two sets are related by a partial monotone S-approximation space. 

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

S-APPROXIMATION SPACES: A FUZZY APPROACH

In this paper, we study the concept of S-approximation spaces in fuzzy set theory and investigate its properties. Along introducing three pairs of lower and upper approximation operators for fuzzy S-approximation spaces, their properties under different assumptions, e.g. monotonicity and weak complement compatibility are studied. By employing two thresholds for minimum acceptance accuracy and m...

متن کامل

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

A note on Volterra and Baire spaces

 In Proposition 2.6 in (G‎. ‎Gruenhage‎, ‎A‎. ‎Lutzer‎, ‎Baire and Volterra spaces‎, ‎textit{Proc‎. ‎Amer‎. ‎Math‎. ‎Soc.} {128} (2000)‎, ‎no‎. ‎10‎, ‎3115--3124) a condition that‎ ‎every point of $D$ is $G_delta$ in $X$ was overlooked‎. ‎So we‎ ‎proved some conditions by which a Baire space is equivalent to a‎ ‎Volterra space‎. ‎In this note we show that if $X$ is a‎ ‎monotonically normal $T_1...

متن کامل

A note on polynomial approximation in Sobolev spaces

Résumé: Pour des domaines étoilés on donne des nouvelles bornes sur les constants dans les inégalités de Jackson pour les espaces de Sobolev. Pour des domaines convexes, les bornes ne dépendent pas de l’excentricité. Pour des domaines non-convexes ayant un point rentrant, les bornes sont uniformes par rapport à l’angle extérieur. L’outil central est un nouvel opérateur de projection sur l’espac...

متن کامل

a note on volterra and baire spaces

in proposition 2.6 in (g‎. ‎gruenhage‎, ‎a‎. ‎lutzer‎, ‎baire and volterra spaces‎, ‎textit{proc‎. ‎amer‎. ‎math‎. ‎soc.} {128} (2000)‎, ‎no‎. ‎10‎, ‎3115--3124) a condition that‎ ‎every point of $d$ is $g_delta$ in $x$ was overlooked‎. ‎so we‎ ‎proved some conditions by which a baire space is equivalent to a‎ ‎volterra space‎. ‎in this note we show that if $x$ is a‎ ‎monotonically normal $t_1$...

متن کامل

A note on soft topological spaces

This paper demonstrates the redundancies concerning the increasing popular ``soft set" approaches to general topologies. It is shown that there is a complement preserving isomorphism (preserving arbitrary $widetilde{bigcup}$ and arbitrary $widetilde{bigcap}$) between the lattice ($mathcal{ST}_E(X,E),widetilde{subset}$) of all soft sets on $X$ with the whole parameter set $E$ as domains and the ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 15  شماره 2

صفحات  117- 128

تاریخ انتشار 2020-10

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023